Image Classification Based On Color Using Thresholding Method

Authors

  • Teguh Agara Selian Universitas Muhammadiyah Sumatera Utara Author
  • Niko Akbar Universitas Dinamika Bangsa Author
  • M. Irfan Hidayat Universitas Indraprasta PGRI Author

Keywords:

Image classification, Thresholding method, Color, Image segmentation, Threshold value

Abstract

This research aims to categorize images based on color using the method of thresholding. Image classification based on color plays a crucial role in various applications such as object detection, traffic monitoring, and medical image processing. The thresholding method is a popular approach used in image segmentation due to its effectiveness and computational efficiency. In this method, grayscale images are converted into binary images by determining a specific threshold value. This research utilizes the thresholding method to separate pixels based on their color intensity. The research methodology consists of several steps, including dataset collection, image pre-processing, color feature extraction, application of the thresholding method, and class labeling. The study's benefits include object recognition, cost and time reduction in image classification, and improved product quality and income for farmers.

References

Al-Ameen, Z., Sulong, G., Rehman, A., & Saba, T. (2021). Image segmentation techniques: A survey of recent developments. Journal of Information Science and Engineering, 37(3), 567–593. https://doi.org/10.6688/JISE.202105_37(3).0002

Cahyadi, M. F., Syahputra, S., & Syari, M. A. (2023). Penerapan Metode Thresholding Pada Proses Transformasi Citra Digital. Educate: Journal Ilmu Pendidikan Dan Pengajaran, 1(3), 319–346. https://doi.org/10.56114/edu.v1i3.422

Ciputra, A., Setiadi, D. R. I. M., Rachmawanto, E. H., & Susanto, A. (2018). Klasifikasi Tingkat Kematangan Buah Apel Manalagi Dengan Algoritma Naive Bayes Dan Ekstraksi Fitur Citra Digital. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 9(1), 465–472. https://doi.org/10.24176/simet.v9i1.2000

Gill, H. S., Khalaf, O. I., Alotaibi, Y., Alghamdi, S., & Alassery, F. (2022). Fruit Image Classification Using Deep Learning. Computers, Materials and Continua, 71(2), 5135–5150. https://doi.org/10.32604/cmc.2022.022809

Heryanto, I. W. A., Artama, Kurniawan, M. W. S., & Gunadi, G. A. (2020). Segmentasi Warna dengan Metode Thresholding. Wahana Matematika Dan Sains, 14(1), 54–64.

Hoang, N. D. (2020). Image Processing-Based Pitting Corrosion Detection Using Metaheuristic Optimized Multilevel Image Thresholding and Machine-Learning Approaches. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/6765274

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2021). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 53(8), 5455–5516. https://doi.org/10.1007/s10462-020-09825-6

Kumar, R., Singh, D., & Kaur, M. (2022). Fruit recognition using HSV color space and machine learning techniques. Multimedia Tools and Applications, 81, 17751–17769. https://doi.org/10.1007/s11042-021-11632-w

Nasution, A. M. T., & Amrullah, S. A. (2022). Simple Vision System for Apple Varieties Classification. Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 11(1), 51–63. https://doi.org/10.21776 ub.industria.2022.011.01.6

Nurfadhilah, A., Huda, M., & Suryani, I. (2021). Implementation of color-based thresholding for real-time waste classification using a camera sensor. IOP Conference Series: Materials Science and Engineering, 1051(1), 012050. https://doi.org/10.1088/1757-899X/1051/1/012050

Rabbani, H. A., Rahman, M. A., & Rahayudi, B. (2021). Perbandingan Ruang Warna RGB dan HSV dalam Klasifikasi Kematangan Biji Kopi. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(6), 2243–2248. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/9013

Ramadan, I., Syauqy, D., & Primananda, R. (2021). Sistem Pendeteksi Kematangan Buah Apel menggunakan Metode Naïve Bayes berbasis Embedded System. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(4), 1654–1661. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/8959

Razabni, D., Medinah, E., & Sinurat, S. (2020). Analisa dan Perbandingan Algoritma Otsu Thresholding dengan Algoritma Region Growing Pada Segmentasi Citra Digital. Journal of Computer System and Informatics (JoSYC), 2(1), 9–16.

Saputra, A. (2019). Klasifikasi Pengenalan Buah Menggunakan Algoritma Naive Baiyes. Jurnal RESISTOR (Rekayasa Sistem Komputer), 2(2), 83–88. https://doi.org/10.31598/jurnalresistor.v2i2.434

Sari, I. E. Y., Furqan, M., & Sriani, S. (2020). Penerapan Metode Otsu dalam Melakukan Segmentasi Citra pada Citra Naskah Arab. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(1), 59–72.

https://doi.org/10.30812/matrik.v20i1.658

Sumari, A. D. W., Marwani, P. I., & Syulistyo, A. R. (2021). Klasifikasi Mutu Telur Burung Puyuh Berdasarkan Warna Dan Tekstur Menggunakan Metode K- Nearest Neighbor ( Knn ) Dan Fusi Classification of the Quality Quail Eggs Based on Color and Texture Using K-Nearest Neighbor ( Knn ) Method and Information. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIK), 8(5), 1019–1028. https://doi.org/10.25126/jtiik.202184393

Suradi, A. A. M., Rasyid, M. F., Mushaf, M., & Rizal, M. (2023). Deteksi Tingkat Kematangan Buah Apel Menggunakan Segmentasi Ruang Warna HSV. Seminar Ilmiah Sistem Informasi Dan Teknologi Informasi, XII(1), 19–26.

Winoto, Y. (2019). Rancang Bangun Model Pengklasifikasian Bahan Pustaka Berbasis Warna. Khizanah Al-Hikmah : Jurnal Ilmu Perpustakaan, Informasi, Dan Kearsipan, 7(1), 56. https://doi.org/10.24252/kah.v7i1a5

Zhang, Y., Zhang, X., & Du, B. (2020). Color image classification using histogram of color features in different color spaces. Pattern Recognition Letters, 133, 38–45. https://doi.org/10.1016/j.patrec.2020.02.015

Downloads

Published

30-06-2025

How to Cite

Selian, T. A., Akbar, N., & Hidayat, M. I. (2025). Image Classification Based On Color Using Thresholding Method. JITCoS : Journal of Information Technology and Computer System, 1(1), 1-6. https://ejournal.multimediatekno.org/index.php/jitcos/article/view/5