Application Of Naive Bayes Algorithm For Sentiment Analysis On Economic Recession Threat
Keywords:
Economic Recession, Sentiment Analysis, Naïve Bayes ClassifierAbstract
Recession is a condition in which real economic growth becomes negative, or in other words, there is a decline in Gross Domestic Product (GDP) for two consecutive quarters in one year. A recession is characterized by a weakening of the global economy that has an impact on the domestic economy in various countries. The greater the dependence of a country on the global economy, the more likely the country is to experience a recession. An economic recession can cause a simultaneous decline in all economic activities, including corporate profits, employment, and investment. In this study, data was collected from YouTube using a crawling technique, with a total of 200 comments analyzed. These comments were then labeled with a lexicon-based method using an Indonesian dictionary. The preprocessing stage was carried out to prepare the data before sentiment analysis. In addition, the TF-IDF word weighting method was applied with the bigram feature (n = 1) in the analysis. The system was evaluated using a confusion matrix, and the results showed that the prediction model, which was based on 200 opinion data with a 9:1 split ratio between training data and test data, achieved an accuracy of 75.00%. However, the precision, recall, and F1-score values each show 0.00%. The performance of the system model built in this study shows less than satisfactory results and may require improvements to increase its effectiveness.
References
Aini, Q., Fauzi, R. R., & Khudzaeva, E. (2023). Economic Impact Due Covid-19 Pandemic: Sentiment Analysis on Twitter Using Naive Bayes Classifier and Support Vector Machine. International Journal on Informatics Visualization, 7(3), 733–741. https://doi.org/10.30630/joiv.7.3.1474
Alfandi Safira, & Hasan, F. N. (2023). Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier. ZONAsi: Jurnal Sistem Informasi, 5(1), 59–70. https://doi.org/10.31849/zn.v5i1.12856
Biswas, S. (2020). Scope of Sentiment Analysis on News Articles Regarding Stock Market and GDP in Struggling Economic Condition. International Journal of Emerging Trends in Engineering Research, 8(7), 3594–3609. https://doi.org/10.30534/ijeter/2020/117872020
Blandina, S. R., Fitrian, A. N., & Septiyani, W. (2020). Strategi Menghindarkan Indonesia dari Ancaman Resesi Ekonomi di Masa Pandemi. Efektor, 7(2), 181–190. https://doi.org/10.29407/e.v7i2.15043
Damuri, A., Riyanto, U., Rusdianto, H., & Aminudin, M. (2021). Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako. Jurnal Riset Komputer, 8(6), 219–225. https://doi.org/10.30865/jurikom.v8i6.3655
Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional. Jurnal Tekno Kompak, 15(1), 131. https://doi.org/10.33365/jtk.v15i1.744
Eka Putra, F. P., Maulana, F. I., Akbar, N. M., & Febriantoro, W. (2023). Twitter sentiment analysis about economic recession in indonesia. Bulletin of Social Informatics Theory and Application, 7(1), 1–7. https://doi.org/10.31763/businta.v7i1.592
Halim Lubis, A., Fadillah Harahap, Y., & Studi Ilmu Komputer, P. (2023). Analisis Sentimen Masyarakat Terhadap Resesi Ekonomi Global 2023 Menggunakan Algoritma Naïve Bayes Classifier. Jurnal Ilmiah Elektronika Dan Komputer, 16(2), 442–450. http://journal.stekom.ac.id/index.php/elkom
Hutagaol, Y. R. T., Sinurat, R. P. P., & Shalahuddin, S. M. (2022). Strategi Penguatan Keuangan Negara Dalam Menghadapi Ancaman Resesi Global 2023 Melalui Green Economy. Jurnal Pajak Dan Keuangan Negara (PKN), 4(1S), 378–385.
Inesta, R., & Hukom, A. (2023). Analisis Fenomena Resesi Ekonomi Indonesia Dimasa Pandemi Virus Covid-19.Jurnal Manajemen Riset Inovasi, 1(2), 121–127. http://prin.or.id/index.php/mri/article/view/1054%0Ahttps://prin.or.id/index.php/mri/article/download/1054/1135
Merinda Lestandy, Abdurrahim Abdurrahim, & Lailis Syafa’ah. (2021). Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 802–808.
Ningsih, M. R., Wibowo, K. A. H., Dullah, A. U., & Jumanto, J. (2023). Global recession sentiment analysis utilizing VADER and ensemble learning method with word embedding. Journal of Soft Computing Exploration, 4(3), 142–151. https://doi.org/10.52465/joscex.v4i3.193
Ningtyas, A. A., Solichin, A., & Pradana, R. (2023). Analisis Sentimen Komentar Youtube Tentang Prediksi Resesi Ekonomi Tahun 2023 Menggunakan Algoritme Naïve Bayes. Bit (Fakultas Teknologi Informasi Universitas Budi Luhur), 20(1), 9. https://doi.org/10.36080/bit.v20i1.2317
Prasetiyo Wibowo, M., Amini, S., & Kusumaningsih, D. (2023). Analisis Sentimen Masyarakat Indonesia Pada Twitter Terhadap Isu Resesi 2023 Menggunakan Metode Naive Bayes. 2 Nd Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), 2(1), 201–210.
Putri Ratna, A. A., Kaltsum, A., Santiar, L., Khairunissa, H., Ibrahim, I., & Purnamasari, P. D. (2019). Term Frequency-Inverse Document Frequency Answer Categorization with Support Vector Machine on Automatic Short Essay Grading System with Latent Semantic Analysis for Japanese Language. ICECOS 2019 - 3rd International Conference on Electrical Engineering and Computer Science, Proceeding, 2, 293–298. https://doi.org/10.1109/ICECOS47637.2019.8984530
Ratnawati, F. (2018). Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter. INOVTEK Polbeng - Seri Informatika, 3(1), 50. https://doi.org/10.35314/isi.v3i1.335
Ressan, M. B., & Hassan, R. F. (2022). Naïve-Bayes family for sentiment analysis during COVID-19 pandemic and classification tweets. Indonesian Journal of Electrical Engineering and Computer Science, 28(1), 375–383. https://doi.org/10.11591/ijeecs.v28.i1.pp375-383
Sari, F. V., & Wibowo, A. (2019). Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi. Jurnal SIMETRIS, 10(2), 681–686.
Sari, R., & Hayuningtyas, R. Y. (2019). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Pada Wisata TMII Berbasis Website. Indonesian Journal on Software Engineering (IJSE), 5(2), 51–60. https://doi.org/10.31294/ijse.v5i2.6957
Setiawati, P. A., Suarjaya, I. M. A. D., & Trisna, I. N. P. (2024). Sentiment Analysis of Unemployment in Indonesia During and Post COVID-19 on X (Twitter) Using Naïve Bayes and Support Vector Machine. Journal of Information Systems and Informatics, 6(2), 662–675. https://doi.org/10.51519/journalisi.v6i2.713
Sutresno, S. A. (2023). Analisis Sentimen Masyarakat Indonesia Terhadap Dampak Penurunan Global Sebagai Akibat Resesi di Twitter. Building of Informatics, Technology and Science (BITS), 4(4), 1959–1966. https://doi.org/10.47065/bits.v4i4.3149
Downloads
Published
Issue
Section
License
Copyright (c) 2025 JITCoS : Journal of Information Technology and Computer System

This work is licensed under a Creative Commons Attribution 4.0 International License.