A Discrete-Event and Monte Carlo-Based Simulation Model for Multi-Server Call Center Queueing Systems

Authors

  • Nur Bainatun Nisa Universitas Islam Negeri Sumatera Utara Author https://orcid.org/0009-0008-1384-4604
  • Dafa Ikhwanu Shafa Universitas Islam Negeri Sumatera Utara Author
  • Muhammad Yusuf Azmi Universitas Islam Negeri Sumatera Utara Author
  • Armayanti Akhiriyah Parinduri Universitas Negeri Padang Author

DOI:

https://doi.org/10.65230/jitcos.v1i2.35

Keywords:

Discrete-Event Simulation, Monte Carlo Analysis, Call Center, Multi-Server Queue

Abstract

This study presents the implementation and performance evaluation of a multi-server queueing system model for call center operations using discrete-event simulation combined with Monte Carlo analysis. The objective is to analyze system performance under varying numbers of service agents to identify the optimal configuration that balances service efficiency and customer satisfaction. The model assumes that customer arrivals follow a Poisson distribution, while service times are exponentially distributed to represent realistic call handling behavior. Simulation experiments were conducted over eight-hour operational periods with server counts ranging from one to eight, each replicated 500 times for statistical robustness. Performance indicators such as average waiting time, server utilization, and Service Level Agreement (SLA) compliance were analyzed to measure system efficiency. Results show that increasing the number of servers significantly reduces average waiting time and enhances service level compliance. Configurations with five or more servers achieved average waiting times close to zero and over 99% compliance with the SLA, while maintaining moderate server utilization levels between 70% and 80%. These findings demonstrate that integrating discrete-event simulation with Monte Carlo methods provides an effective and reliable framework for evaluating service system performance, optimizing resource allocation, and supporting decision-making in call center management.

References

Chong, E. K. P., Kreucher, C. M., & Hero, A. O. (2021). Monte-Carlo-based partially observable Markov decision process approximations for adaptive sensing. International Workshop on Discrete Event Systems, 173–180. https://doi.org/10.1109/WODES.2008.4605941

Firdaus, & Saputra, A. (2021). Perancangan Sistem Informasi Antrian Bank Rakyat Indonesia Dengan Metode Multi Channel dan Bahasa Pemrograman Visual Basic. Jurnal Sains Informatika Terapan, 1(1), 30–33. https://doi.org/10.62357/jsit.v1i1.34

Haddad, T., Assaf, R., Zahran, S., & Kanan, M. (2025). Simulation-Based Decision Support for Call Centre Staffing Optimisation: A Case Study from the Palestinian Telecom Sector. Decision Making: Applications in Management and Engineering, 8(2), 209–224. https://doi.org/10.31181/dmame8220251497

Hinestroza, M. A., Ruiz Morcillo, C., Anacona Mopan, Y., Paz Orozco, H., Chong, M., Luna, A., & de Brito Junior, I. (2025). Queuing theory & discrete simulation as a tool to improve medicine deliver center service levels. Yugoslav Journal of Operations Research, 00, 15–15. https://doi.org/10.2298/yjor240316015t

Ikhwan, A., Aziz, F. A., Tirta, M. P., Putri, M. W., & Utami, A. (2025). Perancangan Sistem Informasi Manajemen Antrian untuk Meningkatkan Efisiensi di Puskesmas Stabat Lama. Saturnus : Jurnal Teknologi Dan Sistem Informasi, 3(1), 68–78. https://doi.org/10.61132/saturnus.v3i1.648

Koole, G., Li, S., & Ding, S. (2025). Call center data analysis and model validation. Queueing Systems, 109(1), 1–25. https://doi.org/10.1007/s11134-025-09935-4

Maharani, N. P. L., Aryani, N. P. M., Surya, A. A. N. B., Jelai, A., & Dwi, M. A. O. (2025). Analisis Data Antrean Non-Poisson. Algoritma: Jurnal Matematika, Ilmu Pengetahuan Alam, Kebumian Dan Angkasa, 3(September). https://doi.org/https://doi.org/10.62383/algoritma.v3i5.679

Marjasz, R., Kempa, W. M., & Kovtun, V. (2025). Quantification of system resilience through stress testing using a predictive analysis of departure dynamics in a queue with multiple vacation policy. Scientific Reports, 15(1), 10484. https://doi.org/10.1038/s41598-025-95478-w

Marquez, A., Heguedas, A., & Iung, B. (2023). Monte Carlo-based assessment of system availability. A case study for cogeneration plants. Reliability Engineering & System Safety, 88(3), 273–289. https://doi.org/https://doi.org/10.1016/j.ress.2004.07.018

Pasaribu, Y. R., Maulana, M. V., Safiri, S. R., Qalbi, S., & Artaviana, D. N. (2025). Modeling Analysis and Queuing System at Mie Gacoan Restaurant. Jurnal Multidisiplin Indonesia, 4(6), 1–13. https://doi.org/10.58344/jmi.v4i6.2328

Putri, S. N. (2025). Model Antrian dan Simulasi untuk Meningkatkan Pengalaman Pengguna dalam Layanan Online. SISTEMATIK; Jurnal Sistem Informasi Dan Informatika.https://doi.org/10.64847/sistematik.v2i1.108

Serper, N., Şen, E., & Çalış Uslu, B. (2022). Discrete Event Simulation Model Performed with Data Analytics for a Call Center Optimization. Istanbul Business Research, 0(0), 0–0. https://doi.org/10.26650/ibr.2022.51.951646

Zhao, X., & Gilbert, K. (2025). A queuing theory-based approach to evaluate service delivery quality. International Journal of Quality and Service Sciences, 17(2), 155–167. https://doi.org/10.1108/IJQSS-10-2024-0149

Downloads

Published

31-12-2025

How to Cite

Nur Bainatun Nisa, Dafa Ikhwanu Shafa, Muhammad Yusuf Azmi, & Parinduri, A. A. (2025). A Discrete-Event and Monte Carlo-Based Simulation Model for Multi-Server Call Center Queueing Systems. JITCoS : Journal of Information Technology and Computer System, 1(2), 46-54. https://doi.org/10.65230/jitcos.v1i2.35

Similar Articles

You may also start an advanced similarity search for this article.