Monte Carlo Simulation for Rice Yield Risk Estimation Based on Weather and Soil Quality Factors
DOI:
https://doi.org/10.65230/jitcos.v1i2.36Keywords:
Rice Production Risk, Monte Carlo Simulation, Weather Factors, Soil Quality, Agricultural UncertaintyAbstract
This study applies Monte Carlo simulation to estimate rice yield risks in the Medan region during 2024 by incorporating key weather variables (temperature, rainfall, and humidity) and soil quality indicators (pH, water content, salinity, texture, and organic matter). Given the increasing impacts of climate change and land degradation on food security, a probabilistic approach is essential for quantifying uncertainties in crop production. Using 10,000 simulated scenarios based on historical and field-derived parameter distributions, the model estimates an average rice yield of approximately 4.2 tons per hectare with a standard deviation of 0.2 tons per hectare, indicating relatively stable production under normal conditions. However, 20% of the simulations produce yields below 3.9 tons per hectare, reflecting elevated risks of crop failure during adverse environmental situations. Sensitivity analysis identifies rainfall and soil pH as the most influential variables, where extreme deviations may reduce yields by up to 35%. These findings offer critical evidence for policymakers and farmers to develop adaptive management strategies aimed at safeguarding sustainable rice production in the region.
References
Aguslina, N., Noor, T. I., & Yusuf, M. N. (2022). Analysis risk production paddy rice fields in the village Karanganyar Subdistrict Cijeungjing Regency Ciamis. Journal Scientific Student Agroinfo Galuh, 9(1). https://doi.org/10.25157/jimag.v9i1.6665
Anggraini, S. D., & Nurcahyo, G. W. (2021). Prediction improvement amount customer with Monte Carlo simulation. Journal Informatics Economy Business, 3(3), 95–100. https://doi.org/10.37034/infeb.v3i3.92
Apridiansyah, Y., Veronika, N. D. M., & Putra, E. D. (2021). Prediction graduation student Faculty Technique Informatics University Muhammadiyah Bengkulu uses Naïve Bayes method. JSAI: Journal of Scientific and Applied Informatics, 4(2), 236–247. Retrieved from https://jurnal.umb.ac.id/index.php/JSAI/article/view/1701
Body Center Statistics North Sumatra Province. (2024, November 1). Area harvest paddy North Sumatra Province is estimated amounting to 419.09 thousand hectares with production paddy around 2.15 million tons of grain dry milled (GKG). Retrieved November 2, 2025, from https://sumut.bps.go.id/id/pressrelease/2024/11/01/1211/pada-2024--lebar-panen-padi-provinsi-sumatera-utara-diperkirakan-sebesar-419-09-ribu-hektare--dengan-production-padi-approximately-2-15-million-ton-gabah-kering-giling--gkg-.html
BMKG. (2024). Weather data Medan daily 2024. Retrieved from https://dataonline.bmkg.go.id/data-harian
Desi, E., Aliyah, S., Lubis, C. P., Elhias, M. A. N., & Tahel, F. (2024). Monte Carlo simulation in predict level surge registration booster vaccine at the Community Health Center Martubung. Journal Technology Information and Knowledge Computers, 11(3), 579–586. https://doi.org/10.25126/jtiik.937570
Harahap, L. M., Manurung, Y. I. B., Situngkir, J. B., & Simanungkalit, N. A. (2024). Management risk climate in sector agriculture: Strategy and implementation. Journal Knowledge Management, Business and Economics (JIMBE), 1(6), 117–126. https://doi.org/0.59971/jimbe.v1i5.217
Hidayah, H. (2022). Monte Carlo method for predict amount visitor stay overnight. Journal Information and Technology, 4(1), 76–80. Retrieved from https://www.jidt.org/index.php/jidt/article/view/193
Hasugian, I. A., Muhyi, K., & Firlidany, N. (2022). Monte Carlo simulation in predict amount delivery and total income. Bulletin Main Engineering, 17(2). https://doi.org/10.30743/but.v17i2.4952
Iskandar, M. J., Prasetyowati, R. E., & Anwar, M. (2024). Risk production farming corporate farming model of rice in Central Java. SEPA: Journal Social Economy Agriculture and Agribusiness, 21(1), 42–51. https://doi.org/10.20961/sepa.v21i1.61481
Priyantono, V. R. A., Maruddani, D. A. I., & Utami, I. T. (2023). Analysis optimal portfolio using index model single and measurement of value at risk with Monte Carlo simulation: Study case of exchange traded funds on the Indonesian Stock Exchange period January 2021–June 2022. Gaussian Journal, 12(2), 158–165. https://doi.org/10.14710/j.gauss.12.2.158-165
Putra, R. D., Apridiansyah, Y., & Sahputra, E. (2022). Implementation Monte Carlo method on simulation prediction amount candidate student new University Muhammadiyah Bengkulu. Processor: Journal Scientific System Information, Technology Information and System Computer, 17(2), 74–81. Retrieved from https://ejournal.unama.ac.id/index.php/processor/article/view/510
Prayoga, R., & Lubis, M. M. (2024). Analysis risk production farming paddy organic. Journal Social Economy Agriculture, 20(3). https://doi.org/10.20956/jsep.v20i3.36533
Raesi, S., Putri, A., & Sinensis, V. (2025). Approach fishbone analysis for identification risk production rice in the sub-district Realm Coast Regency South Coast. Journal Agriculture Science, 9(1). Retrieved from https://ejournal.unand.ac.id/index.php/ags/article/view/2751 doi: 10.36355/jas.v9i1.1762
Ramandilla, P., B., Z., & Pelly, D. A. (2025). Impact change climate to quality land and productivity agriculture on the island Java. Journal Psychosocial and Education, 1(2), 1238–1246. Retrieved from https://publisherqu.com/index.php/psikosospen/article/view/2751
Wardani, M., Rahmaddiansyah, R., & Agussabti, A. (2023). Analysis comparison risk farming paddy on various alternative choice innovation use Monte Carlo simulation. Journal Scientific Student Agriculture, 8(3), 221–227. Retrieved from https://jim.usk.ac.id/JFP/article/view/26607/12420
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nouval Khairi, Muhammad Farhan, Muhammad Zhilali Rahman (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.








