Use of Data Visualization Techniques in Bioinformatics for Time-Based Gene Expression Pattern Analysis
Keywords:
Bioinformatics, Visualization, Gene Expression, Heatmap, PCA, Dendrogram, Volcano PlotAbstract
This study aims to explore data visualization techniques in bioinformatics to analyze time-based gene expression patterns. The research seeks to answer how different visualization approaches can improve the interpretation of large-scale temporal gene expression data. A time-series gene expression dataset consisting of 4381 genes across 24 time intervals was used. The methods applied include heatmaps to identify gene correlations, Principal Component Analysis (PCA) for dimensionality reduction, volcano plots to detect significant expression changes between conditions, and dendrograms to classify genes into functional clusters. The PCA results revealed that two principal components (PC1 and PC2) accounted for 42.32% of the total variance. Volcano plot analysis identified differentially expressed genes with log2 fold change > 1 and p-value < 0.05, while the dendrogram visualization revealed several major gene clusters with similar expression behaviors. These findings demonstrate that combining multiple visualization methods provides comprehensive insights into temporal gene expression dynamics. The application of these methods offers a solution to the challenges of interpreting complex biological data by simplifying correlation patterns, identifying candidate biomarkers, and supporting the development of personalized therapeutic strategies. This research confirms the value of visual analytics in bioinformatics and recommends the integration of these tools in future large-scale omics studies.
References
Alfia, F. S., & Agussalim. (2022). Literature Review of Data Visualization and Geographic Information Systems. COMSERVA : Journal of Research and Community Service, 2(8), 1494–1500. https://doi.org/10.59141/comserva.v2i8.493
Baharuddin, M. (2025). DNA Protein Bioinformatics. Rizmedia Pustaka Indonesia.
Biran, H., Hashimshony, T., Lahav, T., Efrat, O., Mandel-Gutfreund, Y., & Yakhini, Z. (2024). Detecting significant expression patterns in single-cell and spatial transcriptomics with a flexible computational approach. Scientific Reports, 14(1), 26121. https://doi.org/10.1038/s41598-024-75314-3
Blumenkamp, P., Pfister, M., Diedrich, S., Brinkrolf, K., Jaenicke, S., & Goesmann, A. (2024). Curare and GenExVis : a versatile toolkit for analyzing and visualizing RNA ‑ Seq data. BMC Bioinformatics, 1–12. https://doi.org/10.1186/s12859-024-05761-2
Du, J., Yang, Y. C., An, Z. J., Zhang, M. H., Fu, X. H., Huang, Z. F., … Hou, J. (2023). Advances in spatial transcriptomics and related data analysis strategies. Journal of Translational Medicine, 21(1), 1–21. https://doi.org/10.1186/s12967-023-04150-2
Elhaik, E. (2022). Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. In Scientific Reports (Vol. 12). Nature Publishing Group UK. https://doi.org/10.1038/s41598-022-14395-4
Fan, Y., Li, L., & Sun, S. (2024). Powerful and accurate detection of temporal gene expression patterns from multi-sample multi-stage single-cell transcriptomics data with TDEseq. Genome Biology, 25(1), 1–31. https://doi.org/10.1186/s13059-024-03237-3
Geovana, D. (2020). Mechanism of Gene Expression in Organisms and Enzymes That Play a Role. University of Muhammadiyah Prof.Dr.Hamka: Jakarta, (January), 6–26.
Goedhart, J. (2020). VolcaNoseR is a web app for creating , exploring , labeling and sharing volcano plots. Scientific Reports, 1–5. https://doi.org/10.1038/s41598-020-76603-3
Helmy, M., Agrawal, R., Ali, J., Soudy, M., Bui, T. T., & Selvarajoo, K. (2021). GeneCloudOmics: A Data Analytic Cloud Platform for High-Throughput Gene Expression Analysis. Frontiers in Bioinformatics, 1(November), 1–14. https://doi.org/10.3389/fbinf.2021.693836
Ihsani, D. A., Arifin, A., & Fatoni, M. H. (2020). Classification of DNA Microarray Using Principal Component Analysis (PCA) and Artificial Neural Network (ANN). ITS Engineering Journal, 9(1). https://doi.org/10.12962/j23373539.v9i1.51637
Josyula, J. V. N., Talari, P., Pillai, A. K. B., & Mutheneni, S. R. (2023). Analysis of gene expression profile for identification of novel gene signatures during dengue infection. Infectious Medicine, 2(1), 19–30. https://doi.org/10.1016/j.imj.2023.02.002
Kleverov, M., Zenkova, D., Kamenev, V., Sablina, M., Artyomov, M. N., & Sergushichev, A. A. (2024). Phantasus, a web application for visual and interactive gene expression analysis. ELife, 13, 1–34. https://doi.org/10.7554/eLife.85722
Koh, C. W. T., Ooi, J. S. G., Ong, E. Z., & Chan, K. R. (2023). STAGEs : A web ‑ based tool that integrates data visualization and pathway enrichment analysis for gene expression studies. Scientific Reports, 1–12. https://doi.org/10.1038/s41598-023-34163-2
Liu, B., Li, Y., & Zhang, L. (2022). Analysis and Visualization of Spatial Transcriptomic Data. Frontiers in Genetics, 12(January), 1–15. https://doi.org/10.3389/fgene.2021.785290
Maclean, A. L. (2021). Gene expression RVAgene : generative modeling of gene expression time series data. 37(May), 3252–3262. https://doi.org/10.1093/bioinformatics/btab260
Muflihan, Y., Retnawati, H., & Kristian, A. (2022). Cluster analysis with a hierarchical method for the grouping of high schools based on school quality report cards in Nagan Raya Regency. Measurement in Educational Research, 2(1), 22–33.
Razzaque, A., & Badholia, D. A. (2024). PCA based feature extraction and MPSO based feature selection for gene expression microarray medical data classification. Measurement: Sensors, 31(January 2023), 100945. https://doi.org/10.1016/j.measen.2023.100945
Sulianta, F. (2024). Data visualization for beginners. Sulianta Ferry.
Zhao, T., & Wang, Z. (2022). GraphBio: A shiny web app to easily perform popular visualization analysis for omics data. Frontiers in Genetics, 13(September), 1–5. https://doi.org/10.3389/fgene.2022.957317
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rara Fazira, Dimas Yudistira, Kelvyn Rosan

This work is licensed under a Creative Commons Attribution 4.0 International License.