Implementation of Support Vector Machine (SVM) Method in Parkinson's Disease Classification Based on Acoustic Features
Keywords:
parkinson disease, voice acoustics, classification, Support Vector Machine, machine learningAbstract
Parkinson’s disease is a progressive neurodegenerative disorder that significantly impacts quality of life and necessitates accurate early detection. Acoustic analysis of voice features offers a non-invasive and promising approach for classifying this condition. This study aims to evaluate the performance of the Support Vector Machine (SVM) algorithm in classifying Parkinson’s disease based on 22 voice-related features extracted from a public dataset comprising 195 samples. The methodology includes data preprocessing (standardization and class weighting), model training using GridSearchCV, and evaluation based on standard classification metrics and diagnostic curves. The SVM model with an RBF kernel achieved an accuracy of 94.87%, precision of 96.55%, recall of 96.55%, F1-score of 96.55%, and a ROC-AUC score of 0.9828. The results indicate that SVM can effectively handle class imbalance and outliers without the need for complex techniques such as SMOTE or external feature selection. It is concluded that SVM is an effective method for early detection of Parkinson’s disease based on voice data. Future research should focus on testing the model on larger and more diverse datasets and enhancing model interpretability for clinical use.
References
Ada.Enesco. 202AD. “Parkinson’s Disease Cases Predicted to Double by 2050: Global Study - EMJ.” EMJ. Retrieved June 22, 2025 (https://www.emjreviews.com/general-healthcare/news/parkinsons-disease-cases-predicted-to-double-by-2050-global-study/).
Black, M. oyce, and Jane Hokanson Hawks. 2022. “KMB: Gangguan Sistem Neurologis.” Elsevier Health Sciences 1–325.
Cervantes-Arriaga, Amin, Cynthia Sarabia-Tapia, Oscar Esquivel-Zapata, Susana López-Alamillo, Etienne Reséndiz-Henriquez, Teresa Corona, and Mayela Rodríguez-Violante. 2022. “Pitfalls and Caveats in the Diagnostic Pathway of People with ParkinsonÓ?S Disease.” Revista Mexicana de Neurociencia 23(4):119–25. doi: 10.24875/rmn.21000041.
Fajriyah, Nurul, Nouval Trezandy Lapatta, Deny Wiria Nugraha, and Rahmah Laila. 2025. “IMPLEMENTASI SVM DAN SMOTE PADA ANALISIS SENTIMEN MEDIA SOSIAL X TERHADAP PELANTIKAN AGUS HARIMURTI YUDHOYONO.” JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika) 10(2):1359–70.
Ginting, Joel Arie Putranta, Radiatun Maya Sari, Muhammad Rafli Dewantara Siregar, and Dedi Kiswanto. 2024. “ANALISIS SUPPORT VECTOR MACHINE (SVM) UNTUK KLASIFIKASI JENIS KELAMIN PADA IKAN CUPANG DENGANBANTUAN LOCAL BINARY PATTERN (LBP).” JATI (Jurnal Mahasiswa Teknik Informatika) 8(6):12782–86.
Gison, Annalisa, Marco Ruggiero, Davide Tufarelli, Stefania Proietti, Daniela Moscariello, and Marianna Valente. 2025. “Intensive Speech Therapy for Hypokinetic Dysarthria in Parkinson’s Disease: Targeting the Five Subsystems of Speech Production with Clinical and Instrumental Evaluation.” NeuroSci 6(1). doi: 10.3390/neurosci6010007.
Kurnia, Deni, Muhammad Itqan Mazdadi, Dwi Kartini, Radityo Adi Nugroho, and Friska Abadi. 2023. “Seleksi Fitur Dengan Particle Swarm Optimization Pada Klasifikasi Penyakit Parkinson Menggunakan XGBoost.” Jurnal Teknologi Informasi Dan Ilmu Komputer 10(5):1083–94. doi: 10.25126/jtiik.20231057252.
Leite Silva, Ana Beatriz Ramalho, Roger Wilson Gonçalves de Oliveira, Guilherme Pinheiro Diógenes, Marina Feitosa de Castro Aguiar, Camilla Costa Sallem, Micael Porto Portela Lima, Luciano Barroso de Albuquerque Filho, Sara Diógenes Peixoto de Medeiros, Lucas Lopes Penido de Mendonça, Paulo Cesar de Santiago Filho, Diogo Pasquali Nones, Pamella Mendes Martiniano da Silva Cardoso, Michelle Zonkowski Ribas, Stéfani Lara Galvão, Gabriel Felipe Gomes, Amanda Rebouças Bezerra de Menezes, Nayla Lima Dos Santos, Victor Monteiro Mororó, Fairane Sousa Duarte, and Júlio César Claudino Dos Santos. 2023. “Premotor, Nonmotor and Motor Symptoms of Parkinson’s Disease: A New Clinical State of the Art.” Ageing Research Reviews 84:101834. doi: 10.1016/j.arr.2022.101834.
Li, Mimi, Xiaofang Ye, Zhengping Huang, Lichao Ye, and Chunnuan Chen. 2025. “Global Burden of Parkinson ’ s Disease Based from 1990 to 2021 : A Population- ¬ Study.” BMJ Open 1–10. doi: 10.1136/bmjopen-2024-095610.
Liu, Vicki, Dori Smith, and Helena Yip. 2025. “Prevalence and Treatment of Dysphonia in Parkinson’s Disease: A Cross-Sectional National Database Study.” Laryngoscope Investigative Otolaryngology 10(3):e70149. doi: 10.1002/lio2.70149.
Meeting, Winter. 2024. “WINTER MEETING Pathology and Precision Medicine 30 – 31.” The Pathological Society of Great Britain and Ireland (January):1–38. doi: 10.1002/path.6337.
OPEN LINES. 2024. “How Does Parkinson’s Disease Affect Speech? | Open Lines®.” OPEN LINES.
Prasetyo, Aldy Dwi. 2022. “Lebih Dekat Dengan Aeroakustik: Closer to Aeroacoustics.” Bugocenter 1–23.
Pratama, Harfin Ibna, and Putri Taqwa Prasetyaningrum. 2025. “Penerapan Support Vector Machine Untuk Analisis Sentimen Pada Google Review Hotel.” Journal of Information System Research (JOSH) 6(2):1244–52. doi: 10.47065/josh.v6i2.6645.
Riboldi, Giulietta M., Emanuele Frattini, Edoardo Monfrini, Steven J. Frucht, and Alessio Di Fonzo. 2022. “A Practical Approach to Early-Onset Parkinsonism.” Journal of Parkinson’s Disease 12(1):1–26. doi: 10.3233/JPD-212815.
Sari, Rahayu Mayang. 2024. Klasifikasi Data Mining. Serasi Media Teknologi.
Su, Dongning, Yusha Cui, Chengzhang He, Peng Yin, Ruhai Bai, Jinqiao Zhu, Joyce S. T. Lam, Junjiao Zhang, Rui Yan, Xiaoqing Zheng, Jiayi Wu, Dong Zhao, Anxin Wang, Maigeng Zhou, and Tao Feng. 2025. “Projections for Prevalence of Parkinson’s Disease and Its Driving Factors in 195 Countries and Territories to 2050: Modelling Study of Global Burden of Disease Study 2021.” BMJ (Clinical Research Ed.) 388:e080952. doi: 10.1136/bmj-2024-080952.
Surono, Muhammad, Muhammad Fadli, Dian Sri Purwamti, Erliyan Redy Susanto, Magister Ilmu Komputer, Universitas Teknokrat Indonesia, Kota Bandar Lampung, Politeknik Negeri Lampung, and Kota Bandar Lampung. 2025. “Hybrid XGBoost-SVM Model Untuk Sistem Pendukung Keputusan Dalam Prediksi Penyakit Diabetes.” INSOLOGI: Jurnal Sains Dan Teknologi 4(3):443–54. doi: 10.55123/insologi.v4i3.5410.
Wasilewski, Andrzej, Eliza Wasilewska, and Agata Serrafi. 2025. “Exploring Diagnostic Markers and Therapeutic Targets in Parkinson’s Disease: A Comprehensive (1)H-NMR Metabolomic Analysis - Systematic Review.” Archivum Immunologiae et Therapiae Experimentalis 73(1). doi: 10.2478/aite-2025-0011.
WHO. 2023. “Parkinson Disease.” World Health Organization. Retrieved June 22, 2025 (https://www.who.int/news-room/fact-sheets/detail/parkinson-disease).
Yahya. 2022. Data Mining. CV Jejak (Jejak Publisher).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Bintang Hutagalung, Muhammad Nadjib Haeckal

This work is licensed under a Creative Commons Attribution 4.0 International License.