Customer Queue Simulation in a Restaurant Using Web-Based Monte Carlo Method

Authors

  • Amalina shadrina Lubis Universitas Islam Negeri Sumatera Utara Author
  • Muhammad Akmal Rafif Universitas Pembangunan Panca Budi Author

Keywords:

Monte Carlo, Restaurant, Simulation, Queue

Abstract

Modeling and simulation have become important tools in various fields for understanding and optimizing complex systems. In the modern era, advances in information technology and computing offer significant opportunities to apply modeling and simulation more effectively. One area where modeling and simulation can be applied is in the food industry, particularly in addressing queuing issues. Long queues in the context of buying and selling often result in losses for business owners. Restaurants, in particular, often face significant queueing challenges. To address this, simulations are needed to help improve the efficiency and effectiveness of customer service in restaurants. This research aims to design and develop a Food and Beverage Ordering Information System that can help manage transactions and sales reports digitally in a restaurant or cafeteria environment. This simulation uses the Monte Carlo method. Analysis shows that the application of Monte Carlo simulation to restaurant queuing systems can improve service efficiency, particularly in reducing customer waiting times and optimizing the use of service resources. Through testing several queue structure models namely single channel-single phase, single channel-multi phase, and multi-channel-multi phase with a software engineering approach, starting from system requirements analysis, design modification, to queue structure design. The application was tested using the blackbox testing method. The test results showed that all main features, such as login, add menu, transaction, and print report, functioned properly as expected and could handle both valid and invalid inputs correctly.

References

Akbar, H. P., Basuki, A., & Setiawan, E. (2021). Peningkatan Utilisasi Jaringan Distributed Storage System Menggunakan Kombinasi Server dan Link Load Balancing. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 525–532. https://doi.org/10.25126/jtiik.2021834294

Aqidawati, E. F., & Nugraha, I. (2023). Simulasi Usulan Perbaikan Sistem Antrian di Bank XYZ. Waluyo Jatmiko Proceeding, 16(1), 591–600. https://doi.org/10.33005/wj.v16i1.53

Fu’adi, A., & Prianggono, A. (2022). Analisa dan Perancangan Sistem Informasi Akademik Akademi Komunitas Negeri Pacitan Menggunakan Diagram UML dan EER. Jurnal Ilmiah Teknologi Informasi Asia, 16(1), 45–54.

Hakim, C. B., Arifiya, P. T. N., Nugroho, N. M., & Iman, N. (2024). USULAN MODEL SISTEM ANTRIAN PADA INSTANLASI FARMASI BPJS RUMAH SAKIT ABC DI KUDUS. JURNAL TEKNOLOGI DAN MANAJEMEN INDUSTRI, 5(1), 1–9.

Hendra, Y., Syahputra, E. A., & Juledi, A. P. (2023). SIMULASI DALAM PENGOPTIMALAN PENINGKATAN PENJUALAN KUE KAREH-. Journal Computer Science and Information Technology(JCoInT), 1, 107–118.

Karomah, B. (2023). Simulasi Monte Carlo Dalam Menentukan Nilai Opsi Saham.

Kurniawan, E., Fahlovi, O., Avista, Z., Witanto, Y., & Ilyasa, R. (2024). Peran Digital Twin dalam Otomatisasi Manufaktur yang Berkelanjutan. Prosiding Sains Dan Teknologi, 3(1), 51–61.

Kurniawan, K., & Andesta, D. (2022). Analisis Simulasi Sistem Antrian Pemesanan Makanan Pada Warung Apung Rahmawati Gresik. JUSTI (Jurnal Sistem Dan Teknik Industri), 3(3), 368–376.

Luthfi, M., Ilhamsyah, & Rusi, I. (2023). Rancang Bangun Sistem Antrian OnlineMenggunakan Metode Single Channel-Multi Phase. JSI : Jurnal Sistem Informasi, 15(1), 3033–3043.

Madhavi, C., Dasanayaka, D., & Senevirathne, V. (2024). ANALYZING TICKETING PERFORMANCE OF THE KANDY RAILWAY STATION ANALYZING TICKETING PERFORMANCE OF THE KANDY. March.

Nisa, N. C., Wahyu, A., Samudra, A., & Fatoni, R. (2024). MODEL SISTEM ANTRIAN UINSA MART MENGGUNAKAN POLA SINGLE CHANNEL SINGLE PHASE. Infotronik: Jurnal Teknologi Informasi Dan Elektronika, 9(1), 12–18.

Putri, A. A., Utomo, P. E. P., & Iftita, H. (2025). Analisis Teori Antrean untuk Menilai Kualitas Pelayanan pada Usaha Pangsit Chili Oil Menggunakan Model Saluran Tunggal-Fase Tunggal. Jurnal Indonesia: Manajemen Informatika Dan Komunikasi, 6(2), 1115–1125.

Restiana, R. (2022). Pemodelan Dan Simulasi Sistem Antrian Pelayanan Poliklinik Serta Usulan Perbaikan Dengan Menggunakan Flexsim (Studi Kasus: Puskesmas Gunung Samarinda, Balikpapan).

Santoso, T., & Basuki, A. (2024). Metode Simulasi Monte Carlo. 7(x), 1–16.

Subroto, D. E., Supriandi, Wirawan, R., & Rukmana, A. Y. (2023). Implementasi Teknologi dalam Pembelajaran di Era Digital: Tantangan dan Peluang bagi Dunia Pendidikan di Indonesia. Jurnal Pendidikan West Science, 1(07), 473–480. https://doi.org/10.58812/jpdws.v1i07.542

Utami, N. M. C., Sitanggang, B. E. I., Widhiatmika, I. W. A., Wahyuni, N. N. T., & Aryani, N. K. I. (2024). Simulasi Sistem Pelayanan Pemesanan Kedai Kopi XYZ Cabang Sidewalk - Jimbaran. Go-Integratif : Jurnal Teknik Sistem Dan Industri, 5(01), 36–51. https://doi.org/10.35261/gijtsi.v5i01.11321

Wahidah Alwi, Adiatma, & Andi Nurfadhilah. (2023). Analisis Sistem Antrian Pembuatan Kartu Tanda Penduduk (KTP) di Kantor Dinas Kependudukan dan Catatan Sipil Kabupaten Barru. Jurnal MSA ( Matematika Dan Statistika Serta Aplikasinya), 11(1), 133–140. https://doi.org/10.24252/msa.v11i1.40892

Warjaya, A., & Karo, I. M. K. (2024). SIMULASI MONTE CARLO DALAM MEMPREDIKSI PENDAPATAN. JATI(Jurnal Mahasiswa Teknik Informatika), 8(4), 5799–5806.

Yolanda, A. E., Wanandi, B. S., Yahya, H., Fiddarain, S., & Ikhwan, A. (2023). Perancangan Aplikasi Multimedia Berbasis Android Dalam Pembelajaran Membaca Tingkat Taman Kanak-Kanak. Jurnal Penelitian Dan Pengkajian Ilmiah Eksakta, 2(1), 61–66.

Downloads

Published

2025-07-31

How to Cite

shadrina Lubis, A., & Muhammad Akmal Rafif. (2025). Customer Queue Simulation in a Restaurant Using Web-Based Monte Carlo Method. Micro Ohm Journal of Electrical and Computer Engineering, 1(1), 18-31. https://ejournal.multimediatekno.org/index.php/microohm/article/view/10