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ABSTRACT 

Parkinson’s disease is a progressive neurodegenerative disorder that significantly impacts quality of life and 

necessitates accurate early detection. Acoustic analysis of voice features offers a non-invasive and promising 

approach for classifying this condition. This study aims to evaluate the performance of the Support Vector 

Machine (SVM) algorithm in classifying Parkinson’s disease based on 22 voice-related features extracted from 

a public dataset comprising 195 samples. The methodology includes data preprocessing (standardization and 

class weighting), model training using GridSearchCV, and evaluation based on standard classification metrics 

and diagnostic curves. The SVM model with an RBF kernel achieved an accuracy of 94.87%, precision of 

96.55%, recall of 96.55%, F1-score of 96.55%, and a ROC-AUC score of 0.9828. The results indicate that 

SVM can effectively handle class imbalance and outliers without the need for complex techniques such as 

SMOTE or external feature selection. It is concluded that SVM is an effective method for early detection of 

Parkinson’s disease based on voice data. Future research should focus on testing the model on larger and more 

diverse datasets and enhancing model interpretability for clinical use. 
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1. INTRODUCTION 

Parkinson's disease is a progressive neurodegenerative disorder that affects both motor and 

non-motor systems (World Health Organization: WHO & World Health Organization: WHO, 2023). 

Based on 2021 Global Burden of Disease (GBD) data, the condition has affected 11.77 million 

individuals worldwide, reflecting a dramatic increase of 274% since 1990 (Li et al., 2025). 

Epidemiologic projections suggest that the number of sufferers will soar to 25.2 million by 2050, 

with global demographic shifts and population aging contributing approximately 89% of the increase 

(Ada.Enesco, 2025). In Indonesia, the estimated number of sufferers ranges from 200,000 to 400,000 

people, with a projected increase from 90,000 cases in 2005 to 250,000 in 2030 (Su et al., 2025). 

One of the main challenges in the management of Parkinson's disease lies in the complexity 

of accurate early diagnosis (Wasilewski et al., 2025). There is a time lag between the appearance of 

the first motor symptoms and the establishment of a definitive diagnosis, with a median time of 14.5 

months (Cervantes-Arriaga et al., 2022). This delay is even more substantial in cases of young-onset 

Parkinson's disease (YOPD), which can range from 25 to 60 months. This phenomenon is due to the 

non-specific nature of early symptoms and overlap with other medical conditions (Riboldi et al., 

2021). Prodromal symptoms such as olfactory disturbances (hyposmia) can appear up to 20 years 

before a motor diagnosis is made, while psychological manifestations such as anxiety or depression 

tend to appear one to two years earlier (Silva et al., 2022). Consequently, the clinical misdiagnosis 

rate reaches 15% to 24% when compared to post-mortem pathological confirmation (The 

Pathological Society of Great Britain & Ireland, 2024). 

Given the limitations of currently available curative therapies, early detection is an important 

aspect of Parkinson's disease management. Early identification allows for more timely 

implementation of therapeutic interventions to slow symptom progression and optimize patient 
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quality of life. In this regard, the analysis of the acoustic characteristics of the voice of Parkinson's 

patients has shown substantial potential as a non-invasive biomarker (Gison et al., 2025). The 

scientific foundation of this approach is based on the high prevalence of vocal disorders (dysphonia) 

and motor speech disorders (hypokinetic dysarthria) that occur in approximately 89% of Parkinson's 

patients (Liu et al., 2025). These clinical manifestations are often one of the first indicators of motor 

dysfunction, as damage to the nigrostriatal pathway due to degeneration of dopaminergic neurons 

directly affects laryngeal muscle control (Lines et al., 2024). 

Advances in computing technology have enabled the extraction and analysis of measurable 

acoustic features from voice recordings, including fundamental frequency variation (jitter), 

amplitude variation (shimmer), and harmonic-to-noise ratio (HNR). The integration of these acoustic 

features with machine learning algorithms has been shown to be effective in building classification 

models capable of distinguishing healthy individuals from Parkinson's sufferers with a high degree 

of accuracy. One of the previous studies used a combination of Particle Swarm Optimization (PSO) 

for feature selection and XGBoost for classification, and applied SMOTE to overcome class 

imbalance. The results showed that the AUC value of the model with feature selection without 

SMOTE and hyperparameter tuning was 0.9325, while the model without feature selection only 

reached 0.9250. When both SMOTE and hyperparameter tuning techniques were used together, the 

use of feature selection was able to provide a more substantial performance improvement, with the 

feature-selected model achieving an AUC value of 0.9483 compared to 0.9366 in the model without 

feature selection (Kurnia et al., 2023). 

Although these results show promising performance, there is an opportunity to explore other 

algorithms that can provide high accuracy in the scope of Parkinson's disease classification. Support 

Vector Machine (SVM) offers unique characteristics that potentially provide advantages over 

ensemble approaches such as XGBoost (Surono et al., 2025) . SVMs have the fundamental ability to 

find the optimal separating hyperplane in a high-dimensional feature space through the concept of 

margin maximization, which enables superior generalization to never-before-seen data (Ginting et 

al., 2024) . The theoretical advantages of SVM lie in its ability to handle high feature dimensions 

without experiencing the curse of dimensionality, and the stability of its performance on datasets 

with relatively limited sample sizes (Pratama & Prasetyaningrum, 2025). SVM can also implicitly 

handle feature selection through kernel mechanism and regularization parameters, and can be 

adjusted to overcome class imbalance through proper class weight setting (Fajriyah et al., 2025). 

Based on these potential advantages, this study proposes the implementation and 

comprehensive evaluation of a Support Vector Machine model for Parkinson's disease classification 

based on voice acoustic features. The main focus of this research is to answer fundamental questions 

regarding the performance of SVM models in classifying Parkinson's disease based on acoustic voice 

characteristics, and explore their effectiveness as an alternative to existing approaches. Through 

systematic evaluation using standard classification metrics and comprehensive diagnostic analysis, 

this research is expected to contribute to the understanding of SVM effectiveness in the domain of 

voice-based Parkinson's disease detection, while supporting the development of more accurate and 

non-invasive diagnostic tools for future clinical implementation. 

 

2. LITERATURE REVIEW 

1. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised machine learning algorithm used for 

classification and regression tasks. It operates by finding the optimal hyperplane that separates data 

points from different classes in a high-dimensional space. In this study, SVM is employed to classify 

whether a person has Parkinson’s disease or not based on their voice acoustic features (Yahya, 2022). 

2. Classification 

Classification refers to the systematic arrangement of objects or data into groups or 

categories based on established rules or standards. It is the process of assigning labels to instances 

based on their characteristics. In this research, classification is used to predict whether an individual 

suffers from Parkinson’s disease based on their voice acoustic features (Sari, 2024). 
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3. Acoustic Features 

Acoustic Features refers to the study of the physical properties of human speech sounds, 

including frequency, amplitude, and temporal characteristics. Changes in acoustic parameters, such 

as jitter and shimmer, are often associated with neurological disorders like Parkinson’s disease, as 

they affect motor control of speech. In this study, voice acoustic features are extracted from patient 

recordings to be used as input for the Parkinson’s disease classification model (Prasetyo, 2022). 

4. Parkinson's Disease 

Parkinson’s disease is a progressive neurodegenerative disorder that affects the central 

nervous system, primarily impacting motor skills and speech. It is caused by the degeneration of 

nerve cells in the substantia nigra, a brain region responsible for producing dopamine. In this study, 

Parkinson’s disease is the target of classification using voice acoustic features (Black & Hawks, 

2022). 

 

3. METHOD 

The methodological approach of this study follows a structured workflow commonly used in 

machine learning research. It consists of five main stages: data collection, data preprocessing, model 

construction, model evaluation, and results analysis. Each stage is designed to ensure the integrity 

and validity of the classification process for Parkinson’s disease based on acoustic voice features.  

 
Figure 1. Flowchart 

This study employs a quantitative method using the “Parkinson Disease Detection” dataset 

from Kaggle. The dataset contains 195 samples with 22 voice acoustic features and 1 binary target 

feature. Data preprocessing includes removal of the identifier feature, stratified splitting of the dataset 

into training (80%) and testing (20%) sets, and feature standardization using StandardScaler. The 

Support Vector Machine (SVM) classification model is built within a pipeline, where hyperparameter 

optimization (C, gamma, kernel) is performed using GridSearchCV with 5-fold cross-validation, 

utilizing accuracy as the scoring metric.  

Class imbalance is addressed by setting class_weight='balanced'. Model evaluation on the test 

set is conducted using the following performance metrics: 

 

1. Accuracy: measures the proportion of total correct predictions out of all predictions made. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (1) 

2. Precision: measures the proportion of correctly predicted positive instances compared to 

all positive predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (2) 

3. Recall: measures the model's ability to detect true positive instances. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (3) 
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4. F1-Score is the harmonic mean between precision and recall, provides a balance between 

the two. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (4) 

5. ROC-AUC (Receiver Operating Characteristic - Area Under the Curve): measures the 

model’s ability to distinguish between the positive and negative classes across various 

classification thresholds. The AUC score represents the probability that the model ranks 

a randomly chosen positive instance higher than a randomly chosen negative one. 

 

4. RESULTS AND DISCUSSION 

4.1     Results 

The research dataset consists of 195 samples with a total of 24 features, which include 22 

numeric acoustic voice features, one identification feature ('name'), and one target variable ('status') 

indicating the health condition, i.e. 0 for healthy, and 1 for Parkinson's. 

Table 1. Example of Parkinson Disease Detection Dataset 

Name 
phon_R01_S01

_1 

phon_R01_S01

_2 

phon_R01_S01

_3 

phon_R01_S01

_4 

MDVP:Fo(Hz) 119.992 122.4 116.682 116.676 

MDVP:Fhi(Hz) 157.302 148.65 131.111 137.871 

MDVP:Flo(Hz) 74.997 113.819 111.555 111.366 

MDVP:Jitter(%) 0.00784 0.00968 0.0105 0.00997 

MDVP:Jitter(Abs) 0.00007 0.00008 0.00009 0.00009 

MDVP:RAP 0.0037 0.00465 0.00544 0.00502 

MDVP:PPQ 0.00554 0.00696 0.00781 0.00698 

Jitter:DDP 0.01109 0.01394 0.01633 0.01505 

MDVP:Shimmer 0.04374 0.06134 0.05233 0.05492 

MDVP:Shimmer(d

B) 
0.426 0.626 0.482 0.517 

Shimmer:APQ3 0.02182 0.03134 0.02757 0.02924 

Shimmer:APQ5 0.0313 0.04518 0.03858 0.04005 

MDVP:APQ 0.02971 0.04368 0.0359 0.03772 

Shimmer:DDA 0.06545 0.09403 0.0827 0.08771 

NHR 0.02211 0.01929 0.01309 0.01353 

HNR 21.033 19.085 20.651 20.644 

status 1 1 1 1 

RPDE 0.414783 0.458359 0.429895 0.434969 

DFA 0.815285 0.819521 0.825288 0.819235 

spread1 -4.813031 -4.075192 -4.443179 -4.117501 

spread2 0.266482 0.33559 0.311173 0.334147 

D2 2.301442 2.486855 2.342259 2.405554 

PPE 0.284654 0.368674 0.332634 0.368975 

Descriptive statistics for numerical features, which present measures of central tendency 

(mean, median), dispersion (standard deviation, interquartile range), and minimum and maximum 

values. 

Table 2 . Dataset Descriptive Statistics 

 
cou

nt 
mean std min 25% 50% 75% 

MDVP:Fo(Hz) 
195.

0 

154.2286

41 

41.3900

65 

88.33300

0 

117.5720

00 

148.7900

00 

182.7690

00 

MDVP:Fhi(Hz) 
195.

0 

197.1049

18 

91.4915

48 

102.1450

00 

134.8625

00 

175.8290

00 

224.2055

00 
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MDVP:Flo(Hz) 
195.

0 

116.3246

31 

43.5214

13 

65.47600

0 

84.29100

0 

104.3150

00 

140.0185

00 

MDVP:Jitter(%) 
195.

0 
0.006220 

0.00484

8 
0.001680 0.003460 0.004940 0.007365 

MDVP:Jitter(Abs

) 

195.

0 
0.000044 

0.00003

5 
0.000007 0.000020 0.000030 0.000060 

MDVP:RAP 
195.

0 
0.003306 

0.00296

8 
0.000680 0.001660 0.002500 0.003835 

MDVP:PPQ 
195.

0 
0.003446 

0.00275

9 
0.000920 0.001860 0.002690 0.003955 

Jitter:DDP 
195.

0 
0.009920 

0.00890

3 
0.002040 0.004985 0.007490 0.011505 

MDVP:Shimmer 
195.

0 
0.029709 

0.01885

7 
0.009540 0.016505 0.022970 0.037885 

MDVP:Shimmer

(dB) 

195.

0 
0.282251 

0.19487

7 
0.085000 0.148500 0.221000 0.350000 

Shimmer:APQ3 
195.

0 
0.015664 

0.01015

3 
0.004550 0.008245 0.012790 0.020265 

Shimmer:APQ5 
195.

0 
0.017878 

0.01202

4 
0.005700 0.009580 0.013470 0.022380 

MDVP:APQ 
195.

0 
0.024081 

0.01694

7 
0.007190 0.013080 0.018260 0.029400 

Shimmer:DDA 
195.

0 
0.046993 

0.03045

9 
0.013640 0.024735 0.038360 0.060795 

NHR 
195.

0 
0.024847 

0.04041

8 
0.000650 0.005925 0.011660 0.025640 

HNR 
195.

0 

21.88597

4 

4.42576

4 
8.441000 

19.19800

0 

22.08500

0 

25.07550

0 

status 
195.

0 
0.753846 

0.43187

8 
0.000000 1.000000 1.000000 1.000000 

RPDE 
195.

0 
0.498536 

0.10394

2 
0.256570 0.421306 0.495954 0.587562 

DFA 
195.

0 
0.718099 

0.05533

6 
0.574282 0.674758 0.722254 0.761881 

spread1 
195.

0 

-

5.684397 

1.09020

8 

-

7.964984 

-

6.450096 

-

5.720868 

-

5.046192 

spread2 
195.

0 
0.226510 

0.08340

6 
0.006274 0.174351 0.218885 0.279234 

D2 
195.

0 
2.381826 

0.38279

9 
1.423287 2.099125 2.361532 2.636456 

PPE 
195.

0 
0.206552 

0.09011

9 
0.044539 0.137451 0.194052 0.252980 

 

Analysis of the target class distribution revealed an imbalance, with 147 samples (75.4%) in 

the Parkinson's class (status 1) and 48 samples (24.6%) in the healthy class (status 0), resulting in a 

minority to majority class ratio of 0.33. 

Varying degrees of skewness were observed in some of the numerical features; for example, 

the NHR feature showed high positive skewness (4.22), while the HNR feature showed negative 

skewness (-0.51). Detail of skewness values. Identification of outliers using the Interquartile Range 

(IQR) method with a factor of 1.5*IQR indicated the presence of outliers in a number of features, for 

example, the NHR feature had 19 outliers and MDVP:Fhi(Hz) had 11 outliers (Table 3). The 

identified outliers were not specifically addressed (e.g., removed or transformed) to maintain the 

integrity of the original data, but rather, their influence was mitigated through the use of SVM 

algorithms that are relatively robust to outliers and through the feature standardization process. 
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Table 3. Skewness and Number of Outliers (IQR Method) 

Name Skewness Outliers 

MDVP:Fo(Hz) 0.591737 0 

MDVP:Fhi(Hz) 2.542146 11 

MDVP:Flo(Hz) 1.217350 9 

MDVP:Jitter(%) 3.084946 14 

MDVP:Jitter(Abs) 2.649071 7 

MDVP:RAP 3.360708 14 

MDVP:PPQ 3.073892 15 

Jitter:DDP 3.362058 14 

MDVP:Shimmer 1.666480 8 

MDVP:Shimmer(dB) 1.999389 10 

Shimmer:APQ3 1.580576 6 

Shimmer:APQ5 1.798697 13 

MDVP:APQ 2.618047 12 

Shimmer:DDA 1.580618 6 

NHR 4.220709 19 

HNR -0.514317 13 

status -1.187727 - 

RPDE -0.143402 0 

DFA -0.033214 0 

spread1 0.432139 4 

spread2 0.144430 2 

D2 0.430384 1 

PPE 0.797491 5 

The data pre-processing stage begins with splitting the data into feature sets (X), after removal 

of identification features ('name'), and target variables (y). The data was further divided into training 

(80%, 156 samples) and testing (20%, 39 samples) sets using a stratification method based on the 

target class with randomization (random_state=42). This stratification resulted in similar class 

proportions in both data sets: the training set consisted of 118 class 1 samples and 38 class 0 samples, 

while the testing set consisted of 29 class 1 samples and 10 class 0 samples. The numerical features 

in both sets were then standardized using StandardScaler. This standardization process scales each 

feature so that it has a mean close to zero and a standard deviation close to one in the training set. 

 

 

 

 

 

 

 

 

Figure 1. Boxplot of Standardized Features (Training Data) 

Based on the figure (Figure 2), the statistical distribution of each numerical feature in the 

training set after the standardization process. All the features have medians around zero, indicating 



MicroOhm  Journal of Electrical and Computer Engineering              Vol. 1, No. 1; July 2025                                                                                                   

 

 38 

 

that the standardization was successful. The interquartile range (IQR) is relatively uniform across 

most of the features, however, some features such as MDVP:Fhi(Hz), Jitter (%), Shimmer, NHR, and 

PPE display a considerable number of outliers, indicated by dots outside the whiskers. The presence 

of these outliers indicates an abnormal or skewed distribution of data on certain features. On the other 

hand, features such as DFA, RPDE, and spread1 show a more symmetrical and compact distribution. 

Correlations between features on the standardized training data, which showed several feature pairs 

with moderate to high correlations (e.g., between MDVP:Jitter(%) and MDVP:Jitter(Abs) with r > 

0.9). 

 
Figure 2. Heatmap of Standardized Feature Correlation (Training Data) 

The representation of the training data in two principal components using Principal 

Component Analysis (PCA), which accounts for X% of the cumulative variance, indicates a visual 

separation between classes despite the overlap. 

 
Figure 3. 2D PCA Visualization of Training Data by Status 

Support Vector Machine (SVM) classification models are developed using a pipeline structure 

that integrates the feature standardization stage with the SVM model. This pipeline approach ensures 

consistency of data pre-processing applications during the training and evaluation phases. SVM 

model hyperparameter optimization was performed via GridSearchCV with a 5-fold cross-validation 

strategy on the training dataset. The parameter space explored included regularization parameter C 

([0.1, 1, 10, 100]), gamma kernel coefficients (['scale', 'auto', 0.1, 1]), and SVM kernel type (['linear', 

'rbf', 'poly', 'sigmoid']), resulting in a total of 64 tested parameter combinations. The results of the 

hyperparameter optimization process showed that the best parameter combination for the SVM 

model was C=100, gamma=0.1, and RBF kernel. The model with this configuration achieved an 



MicroOhm  Journal of Electrical and Computer Engineering              Vol. 1, No. 1; July 2025                                                                                                   

 

 39 

 

average cross-validation accuracy of 0.9421 on the training dataset, with inter-fold accuracy scores 

ranging from 0.9032 to 0.9688. The difference between the highest training score on a particular fold 

and the lowest validation score on another fold does not indicate any significant overfitting at this 

stage. 

The optimal model generated by GridSearchCV was further evaluated using the test data set. 

The classification accuracy of the model on the test data was recorded as 0.9487, which means 37 

out of 39 test samples were correctly classified. For the positive class (status 1, Parkinson's), the 

precision metric was 0.9655 (28 TP/(28 TP + 1 FP)), recall was 0.9655 (28 TP/(28 TP + 1 FN)), and 

F1-score was 0.9655. For the negative class (status 0, healthy), the precision is 0.9000 (9 TN / (9 TN 

+ 1 FN)), the recall is 0.9000 (9 TN / (9 TN + 1 FP)), and the F1-score is 0.9000. These metrics were 

generated using the classification_report function of scikit-learn. The Area Under the Receiver 

Operating Characteristic Curve (ROC-AUC) on the test data was 0.9828, which indicates the model's 

strong discrimination ability between the two classes. As a baseline, the accuracy of the dummy 

classifier that always predicts the majority class (state 1) on the test data is 29/39 ≈ 0.7436. 

The types of errors made by the model are evaluated in more detail through the confusion 

matrix (Figure 5), which maps the relationship between predictions and actual labels. The confusion 

matrix shows 28 True Positives (TP), 9 True Negatives (TN), 1 False Positive (FP), and 1 False 

Negative (FN). These values indicate that the model was able to correctly classify most of the 

samples in both the positive (Parkinson's) and negative (healthy) classes. The very low error ratio of 

only one error in each type (FP and FN) indicates that the model has a good balance of performance 

in detecting the presence or absence of disease. However, False Negative errors remain a major 

concern in the medical context, as one Parkinson's patient was not identified by the model. Such 

errors have the potential to delay diagnosis and treatment, so in real-world applications additional 

approaches should be considered to reduce the risk of FN without increasing FP. 

 
Figure 4. Confusion Matrix 

A comprehensive classification report, including precision, recall, F1-score, and support 

(actual number of samples per class: 10 for class 0, 29 for class 1) for each class. 

 

 

Figure 5. Classification Report 

To verify the stability of the model performance, an additional evaluation was performed using 

5-fold cross-validation on the entire training data, using the same pipeline (including standardization 



MicroOhm  Journal of Electrical and Computer Engineering              Vol. 1, No. 1; July 2025                                                                                                   

 

 40 

 

applied per fold to avoid data leakage). The resulting cross-validation accuracy scores at each fold 

were [0.96875, 0.96774194, 0.93548387, 0.90322581, 0.93548387], with a mean value of 0.9421 

and a standard deviation of 0.0244. These results are consistent with the best scores reported by 

GridSearchCV, indicating the stability of the model performance on the training data. 

The learning curves generated by varying the training sample size from 10% to 100% (10 data 

points), illustrate the evolution of the training and cross-validation scores. It is observed that both 

curves converge at a high level of performance (final average training score ~0.99, final average 

validation score ~0.94), with a relatively small gap between training and validation scores at larger 

sample sizes. This pattern indicates that the model has good generalization and does not suffer from 

significant overfitting, despite the slightly higher training score (Figure 7, (a)). In the tuning analysis, 

validation curves for the parameter C (with a range of values [0.001, 0.01, 0.1, 1, 10] and gamma 

and kernel fixed at optimal values) were used to evaluate the sensitivity of the model to variations in 

the value of this parameter. The curves show that the model performance increases as the value of C 

increases until it reaches a plateau at C=10, and slightly decreases at C=100 for the validation score, 

confirming that the range used in GridSearchCV is sufficient. 

  
(a) Learning Curve    (b) Validation Curve 

Figure 6. (a) Learning Curve; (b) Validation Curve 

 

The ROC curve visualizes the trade-off between True Positive Rate (TPR) and False Positive 

Rate (FPR) at various classification threshold values. Based on Figure 10, the ROC curve generated 

by the model has a concave shape to the upper left and away from the reference diagonal line, which 

indicates excellent classification performance. The area under the curve (AUC) value of 0.98 

indicates the model's very high discriminative ability in distinguishing between the positive 

(Parkinson's) and negative (healthy) classes. The initial points on the curve show that the model can 

achieve a TPR above 0.85 even at very low FPR levels (below 0.15). This visualization confirms that 

the model is not only accurate in general, but also reliable in maintaining sensitivity to positive cases 

without sacrificing much in mispredicting negatives as positives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Receiver Operating Characteristic (ROC) Curve 
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4.2      Discussion 

 This study aims to evaluate the performance of the Support Vector Machine (SVM) model in 

classifying Parkinson's disease based on acoustic voice features. The results obtained show that the 

developed SVM model has good classification ability. The optimal model, which utilizes the RBF 

kernel with parameters C=100 and gamma=0.1, achieves an accuracy of 0.9487 on the test dataset, 

which substantially surpasses the baseline accuracy of the dummy classifier (0.7436). The ROC-

AUC value of 0.9828 indicates a very strong discrimination ability between the healthy and 

Parkinson's classes. The balanced precision, recall, and F1-score metrics for the positive 

(Parkinson's) class, at 0.9655, and the moderately good metrics for the negative (healthy) class with 

precision, recall, and F1-score of 0.9000, indicate that the model is not only accurate overall, but, 

effective in identifying both classes. 

The target class distribution in the dataset shows an imbalance, with the number of samples 

with Parkinson's disease (state 1) being more dominant than healthy samples (state 0). However, the 

use of the class_weight='balanced' parameter in the SVM model proved to be quite effective in 

addressing this issue, as reflected by the relatively high recall metrics for both classes. This class 

weighting approach tends to be more stable than oversampling techniques such as SMOTE, which 

may increase the risk of overfitting, especially on datasets of limited size such as the one used in this 

study. The confusion matrix on the test data (Figure 5) shows that the model committed only one 

False Positive and one False Negative misclassification. The False Negative error, which classifies 

individuals with Parkinson's as healthy, has more significant clinical implications as it can delay 

early intervention and therefore demands special attention if the model is adopted in a real medical 

setting. 

Prior to the modeling stage, several data pre-processing steps were performed. The process of 

feature standardization using StandardScaler is an important step, given the sensitivity of the SVM 

algorithm to feature scale. Visualization of the standardized feature boxplots (Figure 2) confirmed 

that the features were comparable in scale. Correlation analysis (Figure 3) shows that there are some 

feature pairs with moderate to high correlation, however, SVM with RBF kernel generally handles 

multicollinearity well. Outlier identification (Table 3) shows the presence of extreme values in some 

features. In this study, no transformation was performed to address skewness or explicit outlier 

handling as these approaches prioritized keeping the data close to the original distribution and testing 

the ability of SVMs under these conditions. The good performance of the model indicates that the 

SVM algorithm with the right parameters is able to overcome the influence of the outliers, or that the 

outliers may be a valid variation of the data within the scope of Parkinson's voice features. 

The learning curve (Figure 7 (a)) provides important information about the generalization of 

the model. The convergence between training scores and cross-validation scores at a high level of 

performance, with validation scores consistently above 0.94, indicates that the model does not suffer 

from significant overfitting and has good generalization ability to new data. The small difference 

between the final average training score (~0.99) and the final average validation score (~0.94) is still 

within reasonable limits for a highly capable non-linear model such as SVM with RBF kernel. The 

validation curve for the parameter C (Figure 7 (b)) confirms that the parameter range explored in 

GridSearchCV is adequate, with the model performance reaching a plateau at a certain value of C. 

Compared to previous research by Kurnia et al. (2023) who used XGBoost with Particle 

Swarm Optimization (PSO) feature selection and class imbalance handling using SMOTE, this study 

shows competitive results. Kurnia et al. (2023) reported the highest AUC value of 0.9483 for the 

XGBoost model with feature selection, SMOTE, and hyperparameter tuning. The SVM model in this 

study, without explicit feature selection (other than that inherent in the SVM mechanism) and without 

oversampling techniques such as SMOTE (using class weighting only), achieved an ROC-AUC of 

0.9828. This difference may be due to the characteristics of the dataset used, the difference in 

classification algorithms (SVM vs. XGBoost), or the effectiveness of SVM in handling high-

dimensional data and class imbalance with weighting. SVMs, especially with RBF kernels, are 

known to find the optimal separating hyperplane in high-dimensional feature spaces. The absence of 

SMOTE or external feature selection in this study can be seen as a strength in terms of model 

simplicity and potential robustness to data variation, however, it can also be a weakness if irrelevant 

features or noise dominate in other datasets. 
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The results show that an appropriately configured SVM model is able to provide high classification 

performance for Parkinson's disease based on acoustic voice features, even on unbalanced datasets 

and without complex external feature selection. This contributes to the understanding of the 

effectiveness of SVM in this application domain and answers the research problem. 
 

5. CONCLUSION 

The Support Vector Machine (SVM) model developed in this study shows excellent 

classification performance in distinguishing Parkinson's sufferers from healthy individuals based on 

acoustic voice features. The best model with RBF kernel, C=100, and gamma=0.1 resulted in an 

accuracy of 94.87%, with F1-score, precision, and recall values for the positive class of 0.9655, 

respectively, and precision, recall, and F1-score values for the negative class of 0.9000. The 

confusion matrix showed only one error in each type (1 False Positive and 1 False Negative), and the 

ROC-AUC value of 0.98 confirmed the high discriminative ability of the model. These results 

support the potential utilization of SVM as a non-invasive method in voice-based Parkinson's disease 

early detection. 

Although the evaluation results show good performance, the external validity of the model 

needs to be strengthened through testing on larger, varied and representative datasets from real 

populations. Future research is recommended to explore feature selection techniques, more 

sophisticated class imbalance handling strategies, and model interpretability approaches such as 

SHAP or LIME. It is important that the models are not only accurate, but also understandable and 

trustworthy in clinical contexts that demand transparency in decision-making. 
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